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An Equation of Mordell 

By Andrew Bremner 

Abstract. All integer solutions of the Diophantine equation 6y2 = (x + 1)(x2- x + 6) 
are found. 

1. Mordell [1] asks if all the integer solutions of the Diophantine equation 
6y2 = (x + 1)(x2 -x + 6) are given by x = -1, 0, 2, 7, 15 and 74. It is shown that 
there are precisely seven integer solutions, the seventh with x = 767. 

Consideration of factorization gives, tor some integers a, b, 

x2 -x + 6 = 6b2 Sx2 -x + 6 = 3b2 
xx+I=a2 or /x+ 1 = 2a2 or 

x2 -x + 6 = 2b2 x2 -x + 6 =b2 
X + I = 3a2 ;X + I = 6a2 

and the latter case is impossible modulo 3. We thus obtain, on eliminating x, the three 
quartic equations, 

(i) a4 - 3a2 + 8 = 6b2 

(ii) 4a4 - 6a2 + 8 = 3b2 

(iii) 9a4 - 9a2 + 8 = 2b2 

The standard technique in dealing with equations of this type is to factorize in the 
appropriate quadratic extension of the integers, which here is Z[(1 + \/Z72)/2], to 
obtain a finite set of equations of the form, 

a2= f(v, w), 1 = g(v, w), 

where f, g are homogeneous quadratic forms. 
We need to know some details of the quadratic field Q(vr7~23). The class-number 

of the ring of integers is 3; and we denote the ideal factorizations of 2 and 3 by 

(2) = P2P2' (3) = P3P3 where a bar denotes conjugacy, and P2 P3 = ((1 + \F 3)/2). 
Thus in Eq. (i), (2a2 - 3)2 + 23 = 24b2 implies the ideal equation 

( 2 - V2) = qb2 where q q = (6) and b is some integral ideal. 

There are essentially two possibilities, q = P2 P3 and q =P2 P3 In the former instance, 
b is principal, and in the latter, b P2 is principal. 

Since P3 V2 = ((1 + N/J72)I/4) we have, respectively, 
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Q2a2 - 3 +vY)( 1 + +23)(U+ V'2 

and 

+2a2 _ 3 +)2- ( + N (3~ U + V_232 
2 

~ 2 3 
4_ 

__ 

2_ 
_ 

for some integers u, v satisfying u-v mod 2. Thus we have, respectively, 

-(a2_3)=u2-4u- 23v2 2 2- 46uv - 2V 

4 

u2 + 2uv- 23V2 
4 

and 

U2 - 46uv - 23v2 

u2 + 2uv- 23V2 
8 

where the signs in each equation have been determined by a congruence modulo 3. 
In the former case, putting u + v = 2w, we obtain 

I a2 = w2 + 12wv - 12V2 

In the latter case, u2 + 2uv + v2 0 Omod 8, so u + v = 4w say; then 

I a = 6v2 - 12vw - 2w2 
1 = 3v2 -2W2. 

In similar manner (ii) gives rise to 

III a2 -2w + 12wv - 6v2 
1 = 4w2 - 3V2 

and (iii) to the three pairs 

IV a2 = v(9v + 16w) V a2 = v(v + 8w) 
I:I =9v2 -8w2 

V 
1 =V2 - 18w2 

and 

VI Sa2 32w(v - 9w) 
* I = v2 - 288w2. 

Of these six pairs of equations, V and VI may be treated by simple descent arguments. 
For instance, in VI, we have that w = m2or 2m2 after change of sign if necessary: so 
it suffices to determine all integer solutions of the equations 1 = v2- 18m4 and 1 = 

v2 - 72m4, respectively. This is readily achieved by means of a classical descent argu- 

ment; but we can quote Ljunggren [2] to say that the only integer solutions of the 

former are (?r, ?m) = (1, 0) and (17, 1), and of the latter (?r, ?m) = (1, 0). These 

give the solutions a = 0 and a = 16 of Eq. (iii) whence solutions x = -1, 767 of the 

original equation. 
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Each of the four remaining pairs of equations represents the intersection of two 
quadrics in three-dimensional space; the method of solution, as exploited by Cassels 
[3], is to consider the singular elements in the pencil of the quadrics. Such singular 
quadrics are given by f - Xg, where det(f - Xg) = 0: that is, a linear combination of f 
and g which is a perfect square. In general, of course, X is a quadratic irrational. We 
can thus rewrite each pair of equations in the form a2 - gL(v, w)2 = X for some , e 
Q(X), where L(v, w) is a homogeneous linear form with coefficients in Q(X). We now 
work over Q(5) where 82 = p and equate (a + LS) and (a - LS) as ideals, to two ideal 
factors of X in Q(S), noting that the two factors must be conjugate over Q(,u). All the 
ideals are principal, so using the appropriate arithmetical details of the field Q(S), we 
can equate coefficients of elements of an integer base; in particular, it is clear that the 
coefficient of 82 in a + LS is zero, and the resulting equation is completely solved by 
congruence considerations. 

As an illustration, consider Eq. II. The singular quadrics in this pencil are 
obtained by taking a linear combination which is a perfect square: so let 
3(2 + X)V2 - 12wv - 2(1 + X)w2 be a perfect square. Then 36 = -6(1 + X)(2 + X) 
or2 + 3 + 8 = O. Taking X=(- 3 - \f)/2 we obtain 

a2-(l+)[w~~I-N -_ 2-3 2 3 + N~_ 

and accordingly work in Q(8) where 82 = 1 + . We need some arithmetical de- 
tails of this field; certainly r = (83 - 282 + 28 + 4)/8 is an algebraic integer, since 
r2 -ir((l -V-2)/2)+ 1 = 0. The discriminant ofR = Z[1, 8, 82/2, r] is 2 3 * 232, 

whence R is indeed the ring of integers of the field (for 223 certainly ramifies, so 
232 divides the discriminant, and Stickelberger's criterion says that the discriminant is 
congruent to 0 or 1 modulo 4). It is also readily calculated by standard techniques 
that r is a fundamental unit for the field, and that we have the factorization, 
(2) = q 2(q2 )2, where q2 = P21 (q )2 = P2, with P 2 = (2, (1 + \/-3)/2), 

P2= (2, (1 - -23)/2). 
The equation now becomes in terms of ideals, 

(a+ 6 w- v + 6!u (a - (w _u 
v 

4 ) (ql )6; 

and since the two ideals on the left are conjugate over Z[(1 + N/c72)/2] we must have 

(a ?8(w-2)+ ?4) = (q'2)3 ...(83 63 + 16) 

Because there are no nontrivial roots of unity in Q(8) we now obtain a + 
8(w - v/2) + (8 3/4)v = +(( 3 - 68 + 1 6)/4)f for some integer n. This exponential 
equation is solved by first comparing coefficients of 62, using the fact that r5- 1 
mod 7; a congruence modulo a suitable power of 7 then shows that the only solutions 
are given by n = 0 or - 3. These give a = 4 as solution of (i), and x = 15 as a solution 
of the original equation. 

The complete details of the proof are to appear in my Ph.D. Thesis. I gratefully 
thank Professors Swinnerton-Dyer and Cassels for their advice and encouragement. 
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